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ABSTRACT

Regenerative medicine with stem cells holds great hope for the
treatment of degenerative disease. The medical potential of embry-
onic stem cells remains relatively untapped at this point, and sig-
nificant scientific hurdles remain to be overcome before these cells
might be considered safe and effective for uses in patients. Mean-
while, adult stem cells have begun to show significant capabilities
of their own in repair of damaged tissues, in both animal models
and early patient trials.
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Regenerative medicine holds great hope for millions of
patients with degenerative diseases and injuries. Repair of
damaged organs and tissues using stem cells could poten-
tially address the needs of these patients, encompassing
most of the top 15 leading causes of death in the United
States. However, the emotional appeal of stem cells and
the political debate in which the science is embroiled have
clouded much of the actual results in this area. It is imper-
ative that a complete review of the scientific results and
potential promises be a part of any fully informed debate.

A stem cell has two chief characteristics: (1) it continues
to proliferate so that a pool of cells is always available and
(2) it responds to appropriate signals by differentiating
into one or more specialized cell types (Figure 1A). Numer-
ous sources of human stem cells exist, including those
from early (5–7 day postconception) embryos, fetal tis-
sues, umbilical cord blood and matrix, placental tissues,
and most or all body tissues; postnatal sources are often
grouped together under the term “adult stem cells” (Fig-
ure 1B). The “plasticity” of a stem cell, that is, its ability to
form differentiated cell types, ranges from unipotent (able
to form only one differentiated type), to multipotent (able
to form multiple cell types), to pluripotent (able to form
most or all tissues of the adult body), to totipotent (able to

form all postnatal and extraembryonic tissues, potentially
able to regenerate a complete new embryo).

EMBRYONIC STEM CELLS

Mouse embryonic stem (ES) cells were first grown in cul-
ture in 1981,1,2 but human ES cells were not successfully
cultured until 1998.3 Isolation of ES cells requires the dis-
aggregation of the early embryo—hence the ethical debate
regarding these cells. At about the same time, another
team successfully cultured stem cells, termed embryonic
germ cells, with similar properties from fetal primordial
germ cells.4 ES cells are considered the archetypal pluripo-
tent stem cell; they proliferate extensively in culture and,
based on their normal function during development or
results from reinsertion into another embryo, have the
potential to form any tissue. Although this potential is
attractive for treatment of degenerative disease, the results
to this point have been modest, and there are still many
scientific hurdles to overcome before ES cells might be
used clinically, including generation of functional differ-
entiated cells, tumor formation, and immune rejection.5

The best examples of potential success to date are in ani-
mal models of spinal cord injury and Parkinson’s disease.
Keirstead and colleagues showed some success at amelio-
rating acute (although not chronic) spinal cord injury in
rats, including improvement in locomotor activity,6 and
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FIGURE 1 Characteristics and sources of stem cells. A), Stem cells main-
tain proliferation (circular arrow) and respond to differentiation signals
(arrow to right). B), Sources include embryos, primordial germ cells, dif-
ferentiated fetal tissue, and “adult” stem cells, including umbilical cord
matrix and blood, placenta, and postnatal body tissues.



Nistor and colleagues showed remyelinating activity of
human ES cells in a rat model.7 In animal models of
Parkinson’s disease, ES cells have been successfully trans-
planted and achieved dopamine secretion, alleviating
some of the behavioral symptoms in monkeys8 and rats,9

although in the latter example, the ES cells stopped growth
after 12 weeks. However, some experiments, although
showing partial behavioral improvement, have also shown
tumorigenesis of the injected ES cells.10,11 Tumor forma-
tion continues to be a problem for the potential clinical
use of ES cells; the uncontrolled growth of native or even
ES-derived progenitor cells is one factor that has so far
precluded their use in humans.12,13 A few animal studies
also show some ability of ES cells for cardiac repair,14,15

although in vitro studies have indicated potential prob-
lems with arrhythmia induced by ES-derived cardiac
cells.16 Whereas some early work suggested possible use of
ES cells for generation of insulin-secreting cells and dia-
betes treatment,17,18 more recent studies indicate that the
previously observed insulin secretion was an artifact of
insulin imbibed from the culture medium19,20 and that
insulin-expressing cells derived from ES cells were not true
beta cells, although they were still tumorigenic.12 Thus far,
it has been difficult to obtain a pure culture of ES-derived
functional differentiated cells and to get physiologic inte-
gration into damaged tissues.

Another hurdle yet to be overcome in potential thera-
peutic use of ES cells is immune rejection. Animal studies
have usually relied on immunosuppression or injection
into immunoprivileged sites, such as the brain, and it is
likely that such protocols would need to be followed for
any human trials. Several possibilities have been proposed
by Odorico and colleagues for overcoming potential rejec-
tion of ES cells, including genetic engineering of major 
histocompatibility complex (MHC) genes, induced hema-
topoietic chimerism, establishing “banks” of ES cell lines
to match potential recipients, and somatic cell nuclear
transfer (SCNT; so-called “therapeutic cloning”).21 Zwaka
and Thomson demonstrated that it is possible to do
homologous recombination in human ES cells, similar to
that routinely done in mouse ES cells, opening the possi-
bility of engineering ES cells to match the MHC antigens of
different patients.22 Transplant of ES-derived hematopoi-
etic cells, producing an immune system chimerism, could
potentially overcome immune rejection; the concept has
already been demonstrated using adult stem cell bone
marrow transplants followed by solid organ transplant.23

Banks of human ES cells to match any patient might also
be possible, although it is uncertain just how many ES cell
lines would be required, with estimates ranging from 250
to 10,000 potential lines needed.

Therapeutic cloning has been hailed as a potential
panacea for overcoming immune rejection. Theoretically,
by creating an embryonic clone of the patient, from which
matching ES cells could be harvested, patient-specific cell
lines could be generated that would not be rejected. South

Korean researchers recently claimed creation of scores of
cloned human embryos from patients and production of
11 ES cell lines.24 These claims have now been proven
fraudulent and the published paper withdrawn. It is still
uncertain whether the cells would actually be accepted by
the patient’s immune system, and prominent ES cell
researchers have questioned the efficiency of using thera-
peutic cloning for clinical use.25,26 In a previous experiment
in mice, the cells from cloned embryos were rejected by
the genetically matched host.27,28 Reports of successful
matching of cells derived by SCNT cloning are so far dubi-
ous; the best results to date in animal studies actually
come from gestating cloned animals to the fetal stage and
then harvesting tissue stem cells.29–31

ADULT STEM CELLS

Traditional dogma maintains that there are few adult (tis-
sue or postnatal) stem cells present in the body and that
they are difficult to isolate and grow in culture and
extremely limited in their capacity to generate new cell
types, being limited to forming more cells from their tissue
of origin. However, an explosion in publications in the last
few years is overturning this dogma and showing a
remarkable flexibility for these cells.32 In a 2001 publica-
tion, evidence was presented that a single adult bone mar-
row stem cell could contribute not only to marrow and
blood but also to formation of liver, lung, digestive tract,
skin, heart, and muscle.33 Several examples now exist of
some adult stem cells with pluripotent flexibility, includ-
ing cells from bone marrow,34–36 peripheral blood,37 the
inner ear,38 umbilical cord blood,39,40 nasal mucosa,41

amniotic fluid,42 and the placental amniotic membrane.43

Many of these published studies also document that these
particular pluripotent adult stem cells can multiply in cul-
ture for extensive periods of time while still retaining their
ability to differentiate and providing sufficient numbers of
cells for clinical treatments.

Relevant to their potential use in clinical therapies,
there have been numerous reports of the effectiveness of
adult stem cells in treating animal models of disease. In
stroke models, adult stem cells have provided therapeutic
benefit.44–46 Interestingly, in some experiments, the cells
showed a “homing” ability to the site of tissue damage.
There is some evidence that c-kit ligand (stem cell factor)
may be important for this homing behavior46; although
this phenomenon is still not completely understood, it
provides an intriguing possibility for targeting of regener-
ative stem cells. For spinal cord injury, adult stem cells
have promoted neuronal growth and therapeutic benefit
in rodent models.48–50 A recent result that brings into focus
some of the unexpected problems potentially faced with
regenerative medicine was the discovery that, in success-
ful transplants, the new nerve growth could result in
increased pain; however, this could be managed by
directed differentiation of the stem cells before trans-
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plant.51 Initial clinical trials in Portugal are under way with
approximately 36 patients.52 In animal models of Parkin-
son’s disease, adult stem cells have shown effectiveness at
stimulating dopamine secretion and decreasing behav-
ioral symptoms.53,54 One patient received a transplant of
his own neural stem cells, resulting in decreasing the
symptoms of Parkinson’s disease.55 In a study designed not
to transplant stem cells but rather to stimulate endoge-
nous adult stem cells for repair, five patients were injected
with glial cell–derived neurotrophic factor, resulting in an
average 61% decrease in symptomatology.56 Follow-up
pathology with one patient showed that the growth factor
stimulated sprouting of new neurons.57

Adult stem cells have also been effective at ameliorating
retinal degeneration in animal models,58–60 raising hopes
for possible treatments for diabetic retinopathy and age-
related macular degeneration. Regarding diabetes, several
examples now exist showing generation of insulin-secreting
cells from various adult stem cells, including the liver,60

bone marrow,62,63 and pancreas.64 In some experiments, it
appears that it is not the adult stem cells that form new
beta cells but rather that the injected cells stimulated
endogenous precursors within the pancreas to accomplish
regeneration.65 Using spleen cells, one group was able to
achieve permanent disease reversal and now has approval
from the US Food and Drug Administration to begin
human trials for juvenile diabetes.66

Use of adult stem cells from bone marrow or mobilized
into peripheral blood has become relatively common as an
adjunct for cancer chemotherapy to replace the patient’s
hematopoietic system or for anemias. Similar techniques
to replace the immune system are now being tested with
some success in patients for various autoimmune condi-
tions, such as scleromyxedema,67 multiple sclerosis,68 and
Crohn’s disease.70 Such treatments have also shown prom-
ising results for metabolic disorders, such as Krabbe’s dis-
ease.71 Adult stem cells have also been used in bone repair
protocols.71 Repair of cardiac damage in patients has also
moved to the clinical trials stage, with several reports of
early success in repair of infarct damage.72–74

The mechanism for these regenerative results is still
unclear. Adult stem cells in some cases appear to be capable
of interconversion between different tissue types, known as
transdifferentiation. In some tissues, adult stem cells appear
to fuse with the host tissue and take on that tissue’s charac-
teristics, facilitating regeneration. In some studies, the adult
stem cells do not directly contribute to the regenerating tis-
sue but instead appear to stimulate the endogenous cells of
the tissue to begin repair. Whatever the mechanism, adult
stem cells are successful at regenerating damaged tissue.

In summary, a great deal of work remains to be done
before widespread clinical application of stem cells for
regenerative medicine. Given the scientific hurdles that
yet remain to be overcome for ES cells, they may be less
well suited for clinical applications than for basic scientific
studies. Recent results from animal studies and early clin-

ical trials indicate that adult stem cells, in contrast to pre-
vious theories, have significant capacities for repair of
damaged cells and tissues, somewhat like a native repair
kit. The flexibility and potential of these adult stem cells to
impact disease appear to be enormous.
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